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What does the record tell us?

What drives materials discovery?
What is role of theory?

What constitutes a breakthrough?

Will there be a room temperature
superconductor?
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Where do we find superconductivity?

High temperature phases
Mo and W films

Magnetic elements: Fe, Cr
4f elements: Ce, Eu

of elements: U, Am

Cluster compounds
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The phase diagram of cerium (d=b.c.c., ymficc., fmdicp, am=fc.c. and a"=fc.c.
or distorted dAcp). The cxtension of the true a—y transition line meets
the minimum paint of the melting curve.




Uranium under pressure
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Figure 3 2. The suppression of the 37 K transition, observed by a calonmetric techmque, taken
from Chu and Knapp (1973). The results are compared to the schematic phase diagram
that emerges partly from the results in figure 3.1. The three low-temperature phases are
labelled =, a;, and a3




1950s: the Edisonian approach to discovering
new superconductors
and the era of conventional superconductivity

Enrico Fermi

Fermi: systematics of materials may give a clue

e »f’ 3
Enrico Fermi (1801-1854)
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Infinite Solid State Structures with Metal-Metal Interactions

FIGURE 9-7. The VgSi; cubic building block for V3Si and related A-15 supercor
Shaded circles in the center and at cach of the eight vertices correspond to silice
whereas the pairs of open circles (each linked by a straight line) in each of the

correspond 1o vanadium atoms.

reference cube (Figure 9-7), namely one in each face. The V-V bonc

vanadium chains, although equivalent in the overall structure, arc
following two types relative to a VSi; reference cube with which 1

associated;

1. The first type (A) consists of bonds between two vanadium atc
given face of the VSi, reference cube. Such V-V bonds are sha
between the two cubes sharing the face containing the vanadium

. The second type (B) consists of bonds between a vanadium atorr
adjacent vanadium atom in the chain not associated with th

reference cube. Such V-V bonds are shared between four adjace
cubes.




Batterman and Barrett Phys. Rev. 145, 296 (1966)
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F16. 6. ¢ and a parameter versus 7" of a well-behaved specimen.
The data in the dashed region were difficult to obtain because
of peak overlap and broadening. All evidence indicates that the
change is smooth but rapid in this region.
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1957 the Bardeen-Cooper-

Schrieffer theory arrives

Cooper Pairs Condense

electron glue

—

electron__

_— T =T

C lattice

e-1/NV

pairs condense with well—defined phase ¢



timeline of maximum superconducting transition
temperature T,
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Superconductivity at the
border with Magnetism

superconducting/magnetic interface
competition —» co-habitation —
marriage

vast broadening of materials phase
space




SUPERCONDUCTIVITY ’
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Figure §-1
Superconducting and ferromagnetic transition
temperatures of La Gd alloys [after B, T. Mat-
thias, /IBM J,, 6, 250(1962)). Note the sharp drop
of the superconducting transition point when the
(magnetic) gadolinium atoms arc added to ian-
thanum.

1.0
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Figure 8-2
Relation between temperature and {ield at the up-
per transition point of 2 *'dirty"' Type Il super-
cooductor, Experimental points by E. Guyon and
A. Martinet, The theorectical curve is derived
from Eq, (6-40).




High-Temperature Superconductors, the First Ternary System

Abstract. A new system of high-temperature superconductors is reported. The
compounds, Mog _(A.S, where A is Cu, Zn, Mg, Ag, Cd, Sn, or Pb, are
rhombohedral with a =~ 6.5 angstroms and a ~ 90°. The transition temperatures
range from ~ 2.5°K for the Cd compound to ~ I3°K for the Pb compound.

During the last few years a number
of new superconductors have been dis-
covered among the transition metal
chalcogenides. Most of these are layer
compounds in which the sequence of
layers is -S-S-M-S-S-M-, where M is a
transition metal. The metal-to-metal
inleractions between layers are weak
and the compounds have a pseudo
two-dimensional nectwork of metal
atoms. It is possible to intercalate
these compounds with, for example,
alkali metals, and in this case the
highest reported superconducting tran-
sition temperature is ~4.5°K for

K. MoS, (/). However, where a struc-
ture containing a true three-dimensional
network of metal atoms is synthesized
from similar elements, the transition
temperatures are much higher, for ex-
ample, ~ 13°K for Lig 4Tiy ,S, (2).

In our search for new chalcogenides
with a three-dimensional network of
metal atoms, we found an entirely new
system of high-temperature supercon-
ductors: Mo,_.A.Sg, where A is Cu,
Mg, Zn, Cd, Ag, Sn, or Pb. These
compounds were first synthesized by
Chevrel er al. who mixed the elements
or the sulfides in quartz ampoules at

Table 1. Superconductivity of ternary molybdenum sulfides,

Superconducting

Lattice constants * (A)

transition
temperature (°K)

Composition

Rhombohedral axes

Hexagonal axes

@ o <

i'oo :Cu, Se
Mo,ZnS,
Mo, WALy 2S¢

10.9-10.8
3.0- 2.7
89- 84

9518’
94°41°
91°57

9.63
9.545
9.32

10.18
10.282
10.83




Proc. Natl. Acad. Sci. USA
Vol. 74, No. 4, pp. 1334-1335, April 1977
Physics

High superconducting transition temperatures of new rare earth
ternary borides

(ferromagnetism/superconductors)
BERND T. MATTHIAS*, E. CORENZWIT, J. M. VANDENBERG, AND H. E. BARZ
Bell Laboratories, Murray Hill, New Jersey 07974

Contributed by Bernd T. Matthias, January 14, 1977

ABSTRACT A new group of ternary borides has been found Table 1. Superconducting transition temperatures
that show either ferromagnetism or superconductivity. Their
general formula is MRh B, where M is a transition or rare-earth Compound* T.range, K

element. Their superconducting transition temperatures range
from approximately 2.5 K for the Sm compound to approxi-
mately 12 K for the Lu compound.

YRh,B, 11.34-11.26
NdRh,B, 5.36—5.26

In the past, the superconducting transition temperatures of SmRh,B, 2.51-2.45




Fie.1.11. Supercanducting critical (T

0 - 4 NEel [IN) 2nd Curde (TM) témparaturss

Wi b bloleeinnmirien: RERNgBg compounds. From (Ref,1.18, Cn
th

T

| B

-
|
|

]
|

-

Fic.1.12. Typical ac =
tic susceptibility xac

g clectrical resistance-
. ) . emperature catd for &
SERPEAASURT (X) [1.75)

RESISTAMCE 1,00

comspounds has been the interplay Detween superconductivity and long-range magr
order {Ref.1.18, esp. Chap.9). Like the :!EPc.,;)ts compounds, the REIRn,3, compour
Reve 2n ordered RE sublattice anc superconducting and sagnetsc states with cor
adle free enmergies. This laster aspect 15 apparent in Fig,1.11 in which the st
conducting and magnetic critical temperatures of the RER&GB‘: compounds are pic
versus RZ, Al1 of the superconducting RERN,8, compounds in which the RE &7 gle
shell 13 partially filled undergo some type of magnetic ordering below Ter 4t
peratures T, in the vicinity of 1 K, Where2s LrRb B, becomes ferromagmetic [1.
NdRh,E. (1.70,71), SeRn,3, {1.72), and TmRh,B, 11.73,73) exhidit antiferromage




Brief History
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Figure 1 The minimum in the electrical resistivity of Au (de Hazs, de Boer
and van den Berg, 1934)

3d transition meta! impurities such as Fe, dependent on the impurity
concentration,

The resistance minimum as observed in Au is shown in figure 1, repro-
duced from the 1953 edition of The Theory of Melals by A.H. Wilson,
one of the standard texts of this period. The reason for the minimum
was not known at that time and Wilson comments, 'the cause of the
minimum §s entirely obscure and constitutes a most striking departure
from Mathiessens’s rule, according to which the ideal and residual resis-
tances are additive = some new physical principle seems to be involved'
A very significant advance in the theory of magnetic impurities was an
explanation of this effect by J. Kondo in 1964,

Early theoretical work on impurities in metals in the late 50s by J.
Friedel and associates concentrated on explaining the trends in the be
haviour as the impurity elements are varied across the transition element
series. The most important concept to emerge from this work was that
of ‘virtual bound staies' ; states which are almost localized due to reso.
nant scattering at the impurity site. A different formulation of this idea
was put forwasd by P.W. Anderson (1963), in a version now known as
the "Anderson medel’: this madel has played 2 very important role in
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1979: Heavy Fermions: superconductivity marries
magnetism, its enemy, in CeCu,Si, (T, = 0.5K)

Frank Steglich (MPI CPfS, Dresden) Pictures to be added.
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Mathur et al. Nature 394, 39 (1998)
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Figure 2 Temperature-pressure phase diagram of high-purity single-crystal
CePd,Si,. Superconductivity appears below 7 in a narrow window where the
Neéel temperature 7y tends to absolute zero. Inset: the normal state a-axis
resistivity above the superconducting transition varies as 7 *=%' over nearly two
decades in temperature™®. The upper critical field B at the maximum value of T,
varies near T, at a rate of approximately -6 T/K. For clarity, the values of 7. have
been scaled by a factor of three, and the origin of the inset has been set at 5K
below absolute zero.
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Figure 1 Possible :@mperature-density phase diagram of 3 gure metal in which

magnetic oraer is suenched gracuaily with increasing lattice density. Near the

cntical density n.., wnere the magnenc ransition temperature vanishes, magnetc
interactions become strong and long-range. The normai state is expected to be
anomalous here and, at sufficiently low temperatures, itis 2xpected to give way to
a kind of superconductivity in wnich Ccoper pairs are bound together by a glue of
magnetic origin. Superconductivity may exist only over a very narrow range of
densities near n.-which is where magnetic interactions overwhelm other
channels. Mareover, superconductivity may exist only in samples in which the
carrer mean free path exceeds the superconducting coherence length. In most
cases this requires samples of very high purity.




Phase diagram of CeRhlin; (Park and Thompson)




What happens at T, in heavy Fermions?

Superconductivity opens a gap in the
electronic spectrum at the Fermi surface

The electronic spectrum carries strong
magnetic fluctuations that can mediate
superconductivity or magnetic order

Establishing superconductivity can be seen
as resolving the opposed conflict of local

moment magnetism versus non-local itinerant
electronic states




Stock etal. Phys. Rev. Lett. 100, 087001 (2008)

| CeColn_, Q=(1/2,1/2,1/2)
el=1.3K

o 3K

06 _ 08
E (meV)

FIG. 1. The imaginary part of the dynamic susceptibility at
Q = (333) is plotted in the normal (3 K) and in the super-
conducting (1.35 K) states. A background taken at Q =

(0.3,0.3,0.5) and Q = (0.7,0.7,0.5) was subtracted. The hori-
zontal bar 1s the resolution width.
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FIG. 2 (color online). Dependence of superconducting
transition temperatures 7. and Néel temperatures 7, on x,
where x is the nominal Cd content of crystals. See text for
details. (a) CeColln,_,Cd, )s. (b) CeRhiln,_,Cd, );. and
(c) Celr(In, _,Cd,)s. For (b), Ty* and 7,# are associated with
different antiferromagnetic (AFM) phases as discussed in the
text. 7. and 7'y were extracted from specific heat (Fig. 1) and
confirmed with magnetic susceptibility measurements.




M. Nicholas et al. Phys. Rev. B 76, 052401 (2007)
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1986: the new age of cuprates

THE TECHNOLOGY
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the new iron age: pnictides T_ = 56K

R 1ot [ LT
il mni'jlﬂ'n

Wolfgang Jeitschko




the path to this new material

LaAs (NaCl type) TiNiSb, ZrNiSn (MgAgAs type) ZrNi,;Sn (MnCu,Al type)
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ELSEVIER Journal of Alloys and Compounds 229 (1995) 238-242

The rare earth transition metal phosphide oxides LnFePO, LnRuPO
and LnCoPO with ZrCuSiAs type structure

Barbara I. Zimmer, Wolfgang Jeitschko, Jorg H. Albering, Robert Glaum, Manfred Reehuis
Anorganisch-Chemisches Institwt, Universitar Munster. Wilhelm-Klemm-Strasse 8. D-48149 Miinster. Germany

Received 3 Apnl 19935

The compounds LnFePO (Ln=La-Nd, Sm, Gd). LnRuPO (Ln=_La-Nd. Sm, Gd) and LnCoPO (Ln=La-Nd, Sm)
crystallize with the tetragonal ZrCuSiAs type structure (P4/nmm. Z = 2). which was refined from single-crystal X-ray data of
PrFePO (a =391.13(6) pm, ¢ = 834.5(2) pm, R =0.026) and CeRuPO (a =402.6(1) pm. ¢ = 825.6(2) pm, R =0.018). The
refinement of the occupancy parameters showed the oxygen position to be fully occupied in both compounds. The oxygen
content of the samples was also proven by EDAX analyses. The structures of the compounds SmFePO and LaCoPO were
refined by Rietveld analyses of X-ray powder data.

Keywords: Rare earth metals; Transition metal phosphide oxides: Crystal structure
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Schematic of the crystal structure of MgB,.




letters to nature

Superconductivity at 25.5 K in
electron-doped layered
hafnium nitride

Shoji Yamanaka*1, Ken-ichi Hotehama* & Hitoshi Kawaji*

Figure 1 Structural model of B-ZrNCl (ref. 5) (isostructural with g-HINCI).




Onward and upward?

* the record says that T, is raised by
finding new classes of materials

* maximum T, within each class appears
near a boundary separating local and
non-local physics

* no obvious maximum to T,




